Purpose | This immunoassay kit allows for the in vitro quantitative determination of mouse Renin concentrations in serum, plasma and other biological fluids. |
Sample Type | Serum, Plasma, Biological Fluids |
Analytical Method | Quantitative |
Detection Method | Colorimetric |
Specificity | This assay recognizes recombinant and natural mouse Renin. |
Cross-Reactivity (Details) | No significant cross-reactivity or interference was observed. |
Sensitivity |
< 7.8 pg/mL The sensitivity of this assay, or Lower Limit of Detection (LLD) was defined as the lowest detectable concentration that could be differentiated from zero. |
Characteristics | Mus musculus,Mouse,Renin-1,Angiotensinogenase,Kidney renin,Ren1,Ren,Ren-1,3.4.23.15 |
Components | Reagent (Quantity): Assay plate (1), Standard (2), Sample Diluent (1×20ml), Assay Diluent A (1×10ml), Assay Diluent B (1×10ml), Detection Reagent A (1×120 μl), Detection Reagent B (1×120 μl), Wash Buffer(25 x concentrate) (1×30ml), Substrate (1×10ml), Stop Solution (1×10ml), Plate sealer for 96 wells (5), Instruction (1) |
Material not included | Luminometer. Pipettes and pipette tips. EP tube Deionized or distilled water. |
Alternative Name | Ren1 (REN1 ELISA Kit Abstract) |
Background | Renin is a member of the aspartyl proteinase family produced largely in part by the juxtaglomerular cells in the kidney.Renin differs from the other members of this class by having a pH optimum near neutral pH region with native substrates instead of 2.0 to 3.4 This more neutral pH optimum allows it to be functional in the plasma. Renin also has very high selectivity for substrate due to quite long peptide recognition on either side of the peptide bond undergoing cleavage. An octapeptide substrate was the minimum length to be cleaved by renin. Renin plays a crucial role in the regulation of blood pressure and salt balance through the cleavage of angiotensinogen, which is the only known physiological substrate of renin. Renin releases the decapeptide angiotensin I, which in turn is further converted to vasoactive hormone angiotensin II by angiotensin converting enzyme (ACE). Renin is produced as prorenin with 43 pro residues at the N-terminal of mature renin. The inactive prorenin becomes activated proteolytically by trypsin, cathepsin B, or other proteinases. |
Pathways | ACE Inhibitor Pathway, Peptide Hormone Metabolism, Regulation of Systemic Arterial Blood Pressure by Hormones, Feeding Behaviour |
Sample Volume | 100 μL |
Plate | Pre-coated |
Protocol | The microtiter plate provided in this kit has been pre-coated with an antibody specific to Renin. Standards or samples are then added to the appropriate microtiter plate wells with a biotin-conjugated polyclonal antibody preparation specific for Renin and Avidin conjugated to Horseradish Peroxidase (HRP) is added to each microplate well and incubated. Then a TMB substrate solution is added to each well. Only those wells that contain Renin, biotin-conjugated antibody and enzyme-conjugated Avidin will exhibit a change in color. The enzyme-substrate reaction is terminated by the addition of a sulphuric acid solution and the color change is measured spectrophotometrically at a wavelength of 450 nm ± 2 nm. The concentration of Renin in the samples is then determined by comparing the O.D. of the samples to the standard curve. |
Reagent Preparation |
Bring all reagents to room temperature before use. Wash Buffer - If crystals have formed in the concentrate, warm to room temperature and mix gently until the crystals have completely dissolved. Dilute 30 mL of Wash Buffer Concentrate into deionized or distilled water to prepare 750 mL of Wash Buffer. Standard - Reconstitute the Standard with 1.0 mL of Sample Diluent. This reconstitution produces a stock solution of 1,000 pg/mL. Allow the standard to sit for a minimum of 15 minutes with gentle agitation prior to making serial dilutions (Making serial dilution in the wells directly is not permitted). The undiluted standard serves as the high standard (1,000 pg/mL). The Sample Diluent serves as the zero standard (0 pg/mL). pg/mL 1,000 500 250 125 62.5 31.2 15.6 0 Detection Reagent A and B - Dilute to the working concentration using Assay Diluent A and B (1:100), respectively. |
Sample Collection | Serum - Use a serum separator tube (SST) and allow samples to clot for 30 minutes before centrifugation for 15 minutes at approximately 1000 × g. Remove serum and assay immediately or aliquot and store samples at -20 C or -80 C . Plasma - Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples for 15 minutes at 1000 × g at 2 - 8 C within 30 minutes of collection. Store samples at -20 C or -80 C . Avoid repeated freeze-thaw cycles. Other biological fluids - Remove particulates by centrifugation and assay immediately or aliquot and store samples at -20 C or -80 C . Avoid repeated freeze-thaw cycles. Note: Serum and plasma to be used within 7 days may be stored at 2-8 C , otherwise samples must stored at -20 C ( ≤ 1 months) or -80 C ( ≤ 2 months) to avoid loss of bioactivity and contamination. Avoid freeze-thaw cycles. When performing the assay slowly bring samples to room temperature. |
Assay Procedure |
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37 C directly.). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at 4 C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their particular experiments. |
Calculation of Results |
Average the duplicate readings for each standard, control, and sample and subtract the average zero standard optical density. Create a standard curve by reducing the data using computer software capable of generating a four parameter logistic (4-PL) curve-fit. As an alternative, construct a standard curve by plotting the mean absorbance for each standard on the x-axis against the concentration on the y-axis and draw a best fit curve through the points on the graph. The data may be linearized by plotting the log of the Renin concentrations versus the log of the O.D. and the best fit line can be determined by regression analysis. It is recommended to use some related software to do this calculation, such as curve expert 13.0. This procedure will produce an adequate but less precise fit of the data. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor. |
Restrictions | For Research Use only |
Handling Advice |
1. The kit should not be used beyond the expiration date on the kit label. 2. Do not mix or substitute reagents with those from other lots or sources. 3. If samples generate values higher than the highest standard, further dilute the samples and repeat the assay. Any variation in standard diluent, operator, pipetting technique, washing technique,incubation time or temperature, and kit age can cause variation in binding. 4. This assay is designed to eliminate interference by soluble receptors, ligands, binding 3 proteins, and other factors present in biological samples. Until all factors have been tested in the Immunoassay, the possibility of interference cannot be excluded. |
Storage | 4 °C/-20 °C |
Storage Comment | The Standard, Detection Reagent A, Detection Reagent B and the 96-well strip plate should be stored at -20 °C upon being received. The other reagents can be stored at 4 °C. |